
12-Agent-based modeling II.pdf

4IT496 – Simulations of Systems

Agent-based modeling II

Tomáš Šalamon

salamont@vse.cz

2

Methodologies

• So far, we were developing our simulations intuitively.

• Today, almost any software development project is

managed under certain methodology like RUP, AUP, etc.

• Agent-based simulations can be very complex and so

some methodology can be helpful.

• The development under certain methodology can help:

– Focus on right things

– Avoid common problems

– Make things simpler

– Accomplish the task sooner

– Use best practices that are already developed

3

Methodologies

• Multi-agent methodology is a set of rules, tools and practices

that should optimize the process of requirements collection,

design and development of multi-agent system.

• A bunch of methodologies for multi-agent systems was

developed so far:

– AUML – the extension of UML for multi-agent systems

– CoMoMAS – a knowledge-engineering oriented methodology

– Gaia

– Tropos

– Prometheus

– MASim

– Agentology –purely ABM-oriented methodology

4

Agentology

• The methodology for the

development of agent-based

simulations.

• Developed at KIT, VŠE.

• The methodology is relatively

heavy, platform independent

and can be used for

development of the simulation of

any size including small

simulations in NetLogo.

• Consists of four phases and nine

steps.

5

1. Task Formulation

• The first step is the collection of requirements.

• Reality is always complex and we need to simplify it. If we

want to encompass it, we need to delimit what will be a part of

the model and what will stay outside.

• The result is the particular task that will be solved in the

ongoing steps.

• In our exercises (Market Structure and Building Escape – see

later), the story was already prepared as a part of the

assignment. In reality we have the story, i.e. the unstructured

problem and we need to formulate it into a structured task.

• In this step we still should neglect that we work on agent-based

simulation. We want to solve the task, not inevitably to solve it

by an agent-based model.

6

1. Task Formulation

• Goals of this step are:

– Simplify the reality

– Describe all relevant aspects of the object matter

– Distinguish what is important

– Formulate the goals of the simulation (no simulation just

for simulation’s sake)

– Gather data, ideas and requirements from all

stakeholders (experts, customers, etc.)

• The result can be recorded in open text, charts, schemas,

alternatively also in other forms that are comprehensible

to all participating people (e.g. Use Case diagrams, etc.)

7

2. Task Evaluation

• In this step we should evaluate the statement of the task

and verify that agent-based model is the proper

method for its solution.

• Sometimes the designer has a false presumption that he

or she wants to solve the problem using ABM even if

there can be more suitable methods (discrete-event

simulation, system dynamics, etc.).

• In this step, the choice of the proper method should be

verified.

• There are no exact rules, how to choose the proper

approach, but there are some hints that can be helpful.

8

2. Task Evaluation

• If we can say yes on most of the following questions/statements, ABM

is likely a suitable tool:

– Are there entities that can make decisions?

– Are there many kinds of decision-making entities or many kinds of

decisions?

– Does it look like the system will have dynamic characteristics (its former

states influence the future states)?

– We do not feel a need to treat an overall behavior of the whole system

on macro-level.

– Is it difficult to describe the whole situation as a process diagram or

state-and-transition diagram?

– Is it difficult to “count up” the entities into lump sums and then work solely

with such amounts? It means, are there many different entities that we

cannot treat together?

– Are spatial factors of the environment important for the simulation?

9

3. Conceptual Model

• Now we should know what to do, so it is the time to start

drawing a model.

• The conceptual model is the model of the simulation that is

platform and approach independent. Its purpose is to

represent ideas, not the solutions, so it is as universal as

possible.

• Agentology offers a notation comparable to UML for

agent-based models, however, for simple models, it is

enough to draw what agents we need, what relationships

they have, how they communicate and interact with the

environment.

10

4. Model Consistency

• When we have finished our conceptual data model, we can check its

integrity. If the model is consistent, it is less likely that we will find any

problems and obstacles in later stages.

• The consistency evaluation is based on the fact that most of elements

of the models is depicted in more than one diagram. If any the

element has its counterpart in another diagram, it is likely that the

model is consistent.

• The consistency test is similar to the principle of double-entry

bookkeeping system.

• The test consists of the following steps:

– Interactions

– Relationships

– Indicators

11

5. Platform Selection

• In this step, the conceptual model is finished and probably consistent.

• So far we have solved the task generally and focused on the question: “What

should it do” Since now, the particular platform must be taken into

consideration. The next question will be: “How should it work?”

• As a platform we understand a specific framework, library or language, etc.

where the simulation will be developed (e.g. NetLogo, JADE…).

• The following criteria must be considered:

– Size of the model

– Purpose of the model

– Framework availability

– Required features

– Experience with the specific framework

– Presentation requirements

– …and many others

• There is a wide range of the available frameworks and there is no rule, how

to choose the most proper for the current model.

12

6. Tranformation Guide

• There is often a wide gap between conceptual model and

the approach of the particular platform that we have

selected.

• Unlike object-oriented methodologies, where conceptual and

platform-specific models follow more or less the same rules,

in agent-oriented world it is not the case.

• Therefore we need a bridge between our conceptual model

and the platform specific model or in other words we need a

„cookbook“ that will describe mapping between these two

models.

• In Agentology we call it „Transformation guide“.

• It should be developed generaly in order it could be used

repeatedly.

13

7. Platform-specific Model

• When the development platform was selected, the rest of

the analysis will be carried on specifically for the platform.

• It depends on the selected platform, how the platform-

specific diagrams will be created. Because there is a wide

variety of frameworks, libraries and other tools that can be

used, there is no single manual, for the model on this level.

• Unlike in the case of object-oriented programming, the same

notation cannot be used for this phase.

• If the framework is built on object-oriented approach, UML

could be a language of choice for the platform-specific

model. Otherwise another proper modeling language must

be used.

14

8. Implementation

• Implementation is the phase when the platform-specific model is

transformed into the programming code in the language of the

selected platform.

• The code should be developed, tested and debugged continually until

the simulation is working.

• The concrete procedures depend on the particular platform that is

used.

15

9. Model Evaluation

• Even if the program is without errors and working, it

should be tested for its compliance with reality.

• The model should fulfill the following criteria:

– Stability – most of the simulations (as well as real systems)

generate stable results. It means their values fluctuate within

certain interval and do not diverge to infinity or to zero values. If

the model is stable in time, it is more likely, it will be correct.

– Extrapolation test – if we have data from the reality, we can set

the model accordingly and observe its behavior. If it is consistent

with our expectations, it is more likely that it will provide

reasonable results.

16

Example – Building Escape (1)

• Suppose a public space that is full of people (airport,

ballroom, train terminal, underground station, etc.).

• Suddenly, the explosion occurs in the room.

• People start to flee from the room to the nearest emergency

exit.

• People are spread randomly in the room before the blast.

Immediately after the explosion they turn to the nearest fire

exist and run away.

• Pace of each person is different: it is a random variable

from normal distribution N(1; 0.2). People cannot continue if

they are in crowd. If there is another person ahead, they try

to turn 45 degrees right and left and go on there. If there

are another people too, the person must stop and wait.

17

Example – Building Escape (2)

• Anybody, who is caught up with fire, burns off immediately.

• If people find themselves in the crowd (more than 6 people

around), there is 5% risk of being crushed.

• The fire spreads rapidly. There is 5% risk of ignition of the

patch if there is fire in any of adjacent patches.

• If there is fire in the patch, there is 2% chance of dying out in

the next round.

• How can the quantity of people in the room influence the

level of their safety?

• What about the amount of fire exits?

• In our last simulation, the “agents world”, the simulation environment did not matter

much. Now the spatial characteristics are inherent properties of the simulation and we

must consider them. First of all, we need to set up the world.

18

Simulation World

The default origin of

axes is in the middle of

the world. For our

purposes it is more

suitable to move it into

the bottom-left corner.

The world

consists of so

called

patches

(tiles). Let’s

have 64x64

patches for

this

simulation.

Normally the world wraps

around its edges. For the

simulation of room such

behavior is not suitable.

• The first step of simulation development in NetLogo is usually adding setup

button and creating setup procedure.

• What we need first is to define the room. The room consists of patches that

are situated in a virtual grid. Patches are another kinds of agents in NetLogo

beside turtles and links. Unlike turtles and links they cannot gain additional

variables, but they include spatial characteristics (coordinates).

to setup

 clear-all

 setup-room

end

to setup-room

 ask patches [

 set pcolor brown + 4

]

end

19

Patches

We should create setup procedure

that will be executed when start

button is pressed.

Let’s introduce setup-room procedure

that will build the room. All patches

will be filled with light-brown (beige)

color (brown + 4).

• Let’s define people: a breed of turtles. So far, people will have one property: pace

from N(1; 0.2) and they should be randomly scattered in the room.

breed [people person]

people-own [pace]

to setup-people

 create-people 200

 ask people [

 setxy random-pxcor random-pycor

 set size 2

 set pace random-normal 1 0.2

]

end

to setup

 clear-all

 setup-room

 setup-people

end

20

People

Create 200 people…

…distribute them through the

world and set their pace.

Here we define people breed and

assign pace variable to it.

Setup-people is called from setup procedure.

• What we will need next are exists. For now, let’s make it easier and define just one.

globals [doorx doory]

to setup-people

 create-people 200

 ask people [

 setxy random-pxcor random-pycor

 set size 2

 set pace random-normal 1 0.2

]

end

to setup

 clear-all

 set doorx 1

 set doory 1

 setup-room

 setup-people

end

21

Exits

Suppose we have one

exit on [1;1] so far.

We define exit coordinates just as

a global variable.

• When exit is defined, we should draw it. For now, exit is just a bunch

of green patches. The following code fills those patches that are 2

from the exit (central point) with green.

to setup-room

 ask patches [

 set pcolor brown + 4

 if (pxcor > (doorx - 2)) and (pxcor < (doorx + 2))

 and (pycor < (doory + 2)) and (pycor > (doory - 2)) [

 set pcolor green

]

]

end

22

Exits

This construct seems odd, but

is quite straightforward.

If the coordinates of the current patch are in

the range of [-2;2] from the coordinates of

the exit (stored in doorx and doory

variables)…

…we will paint it green.

• Now we have the exit defined. People should know about the exit in order to

direct their escape. Why do not add new two variables to people containing

the coordinates of the exit?

breed [people person]

people-own [pace headx heady]

globals [doorx doory]

to setup-people

 create-people 200

 ask people [

 setxy random-pxcor random-pycor

 set size 2

 set pace random-normal 1 0.2

 set headx doorx

 set heady doory

]

end

23

Exits

You can object that if there is just one exit, it is

inefficient to store its coordinates into each

turtle and you are right. However, we will add

multi-exit functionality soon, so it is a good

idea to consider it in advance.

Each agent will bear the position of exit.

• As stated in the assignment, we start our simulation in the moment of

the explosion. Now we will define a procedure for it.

 setup-room

 setup-people

 blow-up

end

to blow-up

 let firex random-xcor

 let firey random-ycor

 ask patches [

 if ((firex - pxcor) ^ 2 + (firey - pycor) ^ 2 <= 10) [

 set pcolor red

]

]

end

24

Fire

A random center of the explosion is defined here.

Each patch is asked and if it lays within the

circle with the center in [firex; firey] with the

radius of 10, it should be tinted red.

If you do not understand this line, remember

the circle equation: (x-a)2 +(y-b)2<=r2

The result will probably be no true circle,

because we work with integers.

• We can test the setup button and get something like the following

picture.

• The preparation phase is over now.

• We should add “go” button.

Fire

Do not forget to set the

“Forever” checkbox.

• Now we develop the behavior of the system: what the system does in every round.

• Each turtle strives to get to the nearest exit. If there is an unoccupied patch in front of the turtle, the

turtle moves there.

• We consider the patch ahead free also when there is just one turtle and it is the turtle itself. It can

sound odd, however turtles’ positions are represented by real numbers, but the patch coordinates

are integers. So, since the position is rounded to the nearest integer, it could seem that the turtle is

ahead of itself.

to go

 make-step

end

to make-step

 ask people [

 facexy headx heady

 if (patch-ahead pace != nobody) and ((not any? turtles-on patch-ahead pace) or

 ((count turtles-on patch-ahead pace = 1) and

 (one-of turtles-on patch-ahead pace = self))) [

 jump pace

]

]

end

26

Turtles move

Each person will orient themselves to the exit.

This condition tests if there is a patch ahead of the turtle.

Is the patch free (no turtles on)?

…or is there just one

turtle on the patch

ahead and that is me?
If these conditions are met,

move ahead at a certain speed.

• You can test the model (setup & go) and you will see that the turtles scuttle away from the

room and they gather around the exit.

• It is time to let them out. Create a procedure that will test each agent if it is not staying on

a green patch (exit).

to go

 make-step

 escape

end

to escape

 ask people [

 ask patch-here [

 if (pcolor = green) [

 ask myself [

 die

]

]

]

]

end

27

Turtles move

…if the patch is green, it means that the

person is staying in the exit.

For each person ask the patch that the person is

staying on…

Myself means the person in this case.

This does not mean that the person dies in the simulation. It

simply means that the agent is terminated. It quits the

room and is no more important for the simulation.

Turtles move

• Now our people can exit the room, but their behavior is quite far-fetched.

There was the explosion in the room and fire, but people stay orderly in the

line before the door and wait until the people before them quit the room.

Quite ridiculous, isn’t it?

• The following step seems to be

quite tricky. In fact, it is not. The

only thing we will do is to adjust

make-step procedure.

• If a turtle has another turtle ahead,

it simply stops and waits until the

way out is free.

• Now, let’s adjust it the following

way: if a person cannot move

forward, it tries go 45 degrees

right and if it is not possible, then

45 degrees left. If none of above is

possible, it waits.

28

to make-step

 ask people [

 facexy headx heady

 ifelse (patch-ahead pace != nobody) and ((not any? turtles-on patch-ahead pace) or

 ((count turtles-on patch-ahead pace = 1) and

 (one-of turtles-on patch-ahead pace = self))) [

 jump pace

] [

 ifelse (patch-right-and-ahead 45 pace != nobody) and (not any? turtles-on patch-

 right-and-ahead 45 pace) [

 right 45

 jump pace

] [

 if (patch-left-and-ahead 45 pace != nobody) and (not any? turtles-on patch-left-

 and-ahead 45 pace) [

 left 45

 jump pace

]

]

]

]

end

29

Turtles move

If there is a patch 45 degrees right and

no turtle on it, turn 45 degrees right a

go there.

We change if to ifelse.

Otherwise the same for the left turn.

• According to the assignment, people can be crushed in crowd with 5%

probability if there is more than 6 people around them.

to go

 make-step

 escape

 crush

end

to crush

 ask people [

 ask patch-here [

 if count turtles-on neighbors >= 6 and random 100 < 5 [

 ask myself [

 die

]

]

]

]

end

30

Crush

For each patch where a person is

staying, consider adjacent patches and

count turtles staying on them.

Note that the code is almost the same as the code

of escape procedure.

If there is 6 or more people around, generate a

random number from 0 to 99. If it is between 0 and 4,

“kill” the person (it is crushed).

• Our next task is to simulate spreading of fire. First of all, we will simulate how

the fire dies away (because it is the simpler issue). According to the assignment,

there is 2% probability that the fire on the specific patch dies away.

to go

 make-step

 escape

 crush

 fire-spread

end

to fire-spread

 ask patches [

 if pcolor = red [

 if random 100 < 2 [

 set pcolor black

]

]

]

end

31

Fire spread

…the random number from 0 to 99 is

generated and if it is 0 or 1…

For each red patch…

…the patch is colored black.

• The principle of fire spreading is almost the same as the principle of fire dying.

to fire-spread

 ask patches [

 if pcolor = red [

 if random 100 < 2 [

 set pcolor black

]

]

 if pcolor = brown + 4 and any? neighbors with [pcolor = red] [

 if random 100 < 5 [

 set pcolor red

]

]

]

end

32

Fire spread

…the random number from 0 to 99 is

generated and if it is between 0 and 4…

Note that brown + 4 is a color (“light brown” = beige).

…the patch is colored red.

Each patch is asked if it is beige (no fire on

it) and if at least one of its neighboring

patches is red…

• Good. Flames are spreading, but people do not care much. The fire has no

impact on them. Now we create burn procedure. It will be very simple – its

functionality is exactly the same as of the escape procedure.

 make-step

 escape

 crush

 fire-spread

 burn

end

to burn

 ask people [

 ask patch-here [

 if pcolor = red [

 ask myself [

 die

]

]

]

]

end

Burn off

The only difference is that

it is indeed “sensitive” on

red, not green.

• Previously we stated that there can be more exists in the room. A good idea is not just to

add another one exit, but to create a code that allows adding any number of exits.

• Why not define exits as a new breed? It will be a very special kind of “turtles”.

breed [people person]

breed [exits exit]

people-own [pace headx heady]

exits-own [doorx doory]

globals [doorx doory]

• Let’s create setup-exits procedure and call it from setup procedure.

to setup

 clear-all

 setup-exits

 setup-room

 setup-people

 blow-up

end

to setup-exits

34

Additional exits

There were set doorx 1 and set doory 1

lines in in setup procedure beforehand.

You can remove them. They will be

replaced by a new code.

The exit will have two attributes: doorx

and doory, i.e. its coordinates.

We do not need doorx and doory globals anymore.

• Setup-exits procedure is quite unusual yet very simple.

 setup-exits

 setup-room

 setup-people

 blow-up

end

to setup-exits

 create-exits 2

 ask exit 0 [

 set doorx 1

 set doory 1

]

 ask exit 1 [

 set doorx 63

 set doory 63

]

 ask exits [

 setxy doorx doory

 hide-turtle

]

end

35

Additional exits

Here we ask not all turtles, but just the

specific one: the turtle number 0 and set

its doorx and doory coordinates.

First, we create 2 (or any number of) exit-turtles.

The same for the turtle number 1. Let’s

put it into the opposite corner.

We place exit-turtles on the places

where the exits will be situated and

make them invisible. It will be helpful for

the identification of the nearest exit.

• Next step is to adjust setup-room procedure in order to paint more exits

instead of just one.

to setup-room

 ask patches [

 set pcolor brown + 4

 let x pxcor

 let y pycor

 ask exits [

 if (x > (doorx - 2)) and (x < (doorx + 2)) and (y < (doory + 2))

 and (y > (doory - 2)) [

 ask myself [

 set pcolor green

]

]

]

]

end

36

Additional exits

Let’s create x a y local variables and

store there the coordinates of the current

patch (we would have problem to access

it directly from within the following ask

exits statement otherwise).

The condition is without any changes,

nonetheless it is tested for each exit.

Myself means the current patch.

• The last thing we should do is to change setup-people procedure. So far, each

person simply stored the coordinates of the only exit. Now each person should

assess its distance from all the exits and choose the nearest one.

 setxy random-pxcor random-pycor

 set size 2

 set pace random-normal 1 0.2

 let min-dist 1000000

 let min-exit 0

 ask exits [

 if distance myself < min-dist [

 set min-dist distance myself

 set min-exit self

]

]

]

end

37

Additional exits

Let’s create min-dist and min-exit

variables. Min-dist means the distance

of the current turtle to the nearest

exit. Min-exit is the number of the

nearest exit. The initial value of min-

dist is intentionally absurdly high.

Each person (myself) calculates its distance from the current

exit. If this distance is lower than min-dist (and it is surely

lower at least than 1000000), it is assigned to min-dist and

the number of the turtle is assigned to min-exit.

• Each person should have stored the coordinates of the nearest exit.

 setxy random-pxcor random-pycor

 set size 2

 set pace random-normal 1 0.2

 let min-dist 1000000

 let min-exit 0

 ask exits [

 if distance myself < min-dist [

 set min-dist distance myself

 set min-exit self

]

]

 set headx [doorx] of min-exit

 set heady [doory] of min-exit

]

end

38

Additional exits

After the ask exits statement we are

sure that we have the nearest turtle in

min-exit variable.

[doorx] of min-exit simply means

doorx variable of the min-exit turtle.

For comparison, the same statement in

Java could look like: min_exit.doorx

(where min_exit would be an instance

and doorx its public attribute).

Each person assigns doorx and doory

coordinates into its headx and heady variables.

• We should switch the time control of the model from continuous to discrete (on

ticks) mode and add a call of tick command.

to go

 make-step

 escape

 crush

 fire-spread

 burn

 tick

end

39

Ticks

.

Don’t forget to switch

time control in the

environment as well.

• Everything seems to be working

very well. The very last thing

we should add are some

controls and monitors.

Controls & Monitors

Input Box

• Why the number of

people in the simulation

should be deemed given?

• We can set it with Input

Box. It is very similar to

Slider control we know,

but here we can input a

number directly.

• A global variable named

persons is created (you

should not add it into

globals, it is “global by

definition”).

to setup-people

 create-people persons

 ask people [

Setup-people procedure should be changed.

• Let’s monitor number of people who escaped, number of people who were crushed and

number of people who were burned. We will need to introduce global variables for

them.

people-own [pace headx heady]

exits-own [doorx doory]

globals [escaped-people burned-people crushed-people]

to go

• Next, we should make changes to escape, burn and crush procedures. They should rise

aforementioned globals for each escaped, burned or crushed person.

to escape

 ask people [

 ask patch-here [

 if (pcolor = green) [

 ask myself [

 set escaped-people escaped-people + 1

 die

]

42

Monitors

• The same with burned people…

to burn

 ask people [

 ask patch-here [

 if pcolor = red [

 ask myself [

 set burned-people burned-people + 1

 die

]

• …and crushed people.

to crush

 ask people [

 ask patch-here [

 if count turtles-on neighbors >= 6 and random 100 < 5 [

 ask myself [

 set crushed-people crushed-people + 1

 die

]

43

Monitors

Monitor

• Now we add monitor for each

global.

Monitor

• We can add as many monitors

as needed for our purposes.

This monitor is bound

to the statement.

• How many fire exits should premises have? We repeated the simulation 10

times for one exit, two exits, three exits and four exits and watched the

results. (Note that for statistically significant results, the number of repetitions

should be much higher.)

• It seems that more exists generally mean more safety. At least as the

precaution of crushing it is good to have at least 3 exits (the impact of the

fourth exit is not significant).

• On the other hand it seems that more exits does not always mean more victims

of dying in the fire. However, it could indicate inadequacy of the model as

people run to the neatest exit, no matter if they have to go through the fire,

what is not realistic. The model should be improved in this matter.

Results

Exits Escaped Crushed Burned

1 177.7 9.9 12.4

2 168.4 2.2 29.4

3 182.8 0.2 17.0

4 192.0 0.5 7.5

• The second simulation was focused on the number of people in the room.

We simulated a room with two exits when there are 100, 200, 500 and

1000 people.

• The more people in the room, the more dangerous situation. Especially the

risk of crushing grows rapidly with the number of people in the room.

• The relationship between the number of people and the risk of burning is

not so obvious, but it can point to model inadequacy as well. If there were

tens or hundreds of people crushed and dead bodies everywhere, it is not

probable that people will be able to scuttle without panic and fast

enough from the room.

Results

People Escaped Crushed Burned

100 94% 0% 6%

200 84% 1% 15%

500 72% 17% 12%

1000 51% 40% 8%

4IT496 – Simulations of Systems

Questions? Comments?

Tomáš Šalamon

salamont@vse.cz

