Assignments WS 2017/2018

From Simulace.info
Revision as of 14:46, 14 December 2017 by Xbilr00 (talk | contribs)
Jump to: navigation, search

Simulation Proposal (xvatj00)

Software: Vensim

I am a contemporary gospel choir conductor (choir and full professional band). We organize more or less 3 concerts a year. It has been a long time since we released our last CD and now we would like to earn money to be able to start recording a new one. For this purpose, I would like to find out those factors (such as choir performance, band performance, tickets’ price, concert’s location, etc.) that influence potential audience when choosing a band to go see and how to improve them, and thus get more people to come to our concerts - and earn more money for the tickets and in general. I will use a survey to get data about people’s preferences. Xvatj00 (talk) 17:45, 27 November 2017 (CET)

For this kind of simulation you would need ritch historical data so that you would be able to find premises you would then build the equations on (and to be able to verify the model when you compare its results with the historical data). Unfortunately the survey will not help you to quantify the parameters and the number of concerts is really low to be usable for such simulation. I probabbly would suggest a different topic. Oleg.Svatos (talk) 18:43, 30 November 2017 (CET)
I can get data up to 10 years back. The number of concerts included only those concert that are organized by us only, but we perform in many other concerts as well. Do you have any suggestions how to make the simulation possible? Thank you. Xvatj00 (talk) 18:59, 30 November 2017 (CET)
You would have to be able to define parameters that determine the demand for the individual concerts, and based on the data quantify them and quantify their impact on the demand for a concert. Based on that one could then discuss how the concert and its content should be se up so that you get maximum profit out of it. That is not a really easy ...Oleg.Svatos (talk) 15:07, 6 December 2017 (CET)

Intersection Optimalization (NEW ASSIGNMENT)

Software: NetLogo

Almost every day, I walk by the intersection of Anglická and Bělehradská / Škrétova. During peak hours, there are traffic jams on only one street leading to the intersection, which I find interesting. Because of this fact, I would like to simulate the intersection in order to find out if the lights are really optimally set there, and potentially, find out the optimal setting of the intersection’s lights.

As I’ve already mentioned, there are lights directing the intersection. Also, there is a tram track on the Bělehradská / Škrétova street which goes straight, while most of the cars coming from Bělehradská street turn left. I will use real intervals of all of the lights from a chosen time during peak hours, and the number of cars and trams coming to the intersection (including their speed, direction, etc.). At first, I will set the lights to constant ticks according to the reality to simulate the real situation. After that, I will try to find out an optimal setting of the lights and evaluate, what the optimal setting is or if it meets with the reality. Xvatj00 (talk) 18:48, 8 December 2017 (CET)

Please, try to obtain real data. Approved. Tomáš (talk) 04:05, 12 December 2017 (CET)

Social media post (Amelievh)

Software: Netlogo

Nowadays social media is a hot topic, and a lot of recruiters and other business people use linked in to attract new employees or just to share their thoughts.

For my simulation, I was thinking about researching the reach of a social media post. Someone posts something on LinkedIn, and depending on the amount of connection and amount of sharing I want to check how many people you can reach with one post. I will try to find real-world numbers and make it a useful tool for the business world.

Simulations on social media are typically problematic, mostly due to the lack of real data. I would recommend to try finding, something else. Tomáš (talk) 04:11, 12 December 2017 (CET)

Simulation Proposal (A_V)

Software: NetLogo

We own a zoo. We have a huge kennel for hamsters. We have observed a strange behavior of the hamsters. When a female hamster gives birth to babies (usually up to 12), the mother may come under the pressure of nurturing each and everyone of them. After giving the birth a female hamster becomes weak and may die if does not have enough food and vitamins. Also when the mother is weak, she can not lactate milk for all of her babies. Since the quality of food provided by the zoo does not always satisfy the hamster, the mother eats her weakest babies to get extra protein to feed other babies, which increases the probability of survival of her and the rest babies. Another reason of the deaths of hamsters, as mentioned above, is the adequate quality of food. If the food does not satisfy the hamsters, they do not eat it and the food rots by polluting the kernel which leads to an increased number of hamster deaths. In the simulation I will focus on how much the food quality, the amount of food and keeping the kernel clean influences the number of hamster deaths.

Makes sense, however it is necessary to obtain real data. Implementation of some of them will not be easy. Approved.

Simulation proposal (hram00)

Software: NetLogo

Imagine a beach by the ocean guarded by several lifeguards. The warmer the ocean is, the more jellyfish come. If there is a lot of jellyfish in the water, people often get stung. If they get proper treatment in less then five minutes, the pain goes away quickly end they can enjoy the day on the beach. Otherwise they're mad for the rest of the day. In case someone is alergic, the situation can get critical. My simulation should serve as a support for decision how many lifeguard should be placed on the beach and how far from each other to provide the best services and ensure the highest satisfaction of people on the beach and make sure no one will die because of jellyfish sting. The Simulation will be simplified but based on reality. There are no real data about number of jellyfish in the water but there are data about number of people stung every day. Based on current experience I can make a simulation which is close to reality. So far there is one lifeguard each 200 meters, at the begining of the season when the water is cold 70 F there is 0-2 people stung in one lifeguard's area, in the hot days by the end of the season (water has about 85 F) the numbers of people stung on each lifeguard stand go up to 100 a day and we know there are cases that it took too long to get help.


Hub airport (yaua00)

Software: NetLogo

As I study not in my home country I have to use plane quite often to get home and sometimes I have to go to a hub airport and change the plane there. So in my simulation I want to show the phenomenon of hub airports. Hub airports are used by one or more airlines to concentrate passenger traffic and flight operations at a given airport. They serve as transfer (or stop-over) points to get passengers to their final destination. The simulation will start with the certain amount of the airports and airplanes will appear at random locations. Airplanes will find a random airport and fly to it, leaving trails on screen to show their paths. Over time new airport and a new airplane will be built. The airports that have existed for the longest will obviously already have the greatest number of airplanes flying to them, but the goal of the simulation is to see when over some time after new airports are built, if the new airport is going to get more planes and if there is going to be new hub airport. Yaua00 (talk) 23:21, 12 December 2017 (CET)


Government Policies and Its Influence to Economy

Software: Vensim

I would like to simulate an impact of government decision to a economy. The government will have few tools which can be fully influenced by political decisions (government spending, tax rates etc.). Based on this I will simulate an impact of these decisions to economic indicators (GDP growth, state budget incomes, inflation, state budget saldo etc.). This simulation should reflect a great complexity of each decision and its impact even to indicators which you will not imagine on the first sight.