Nashova rovnováha
Jedním ze základních úkolů teorie her je popsání optimálních strategií jednotlivých hráčů, respektive výsledku hry (za předpokladu racionálního chování hráčů). Vhodným nástrojem je nalezení Nashovy rovnováhy.
Contents
Definice
Nashova rovnováha je takové řešení, ve kterém platí, že pokud se jeden z hráčů nebude držet své optimální strategie, zatímco jeho soupeř (soupeři) ano, jeho výhra se sníží, nebo zůstane stejná.[1]
Vlastnosti Nashovy rovnováhy
Z definice vyplývají následující vlastnosti Nashovy rovnováhy, které jsou užitečné pro její nalezení a interpretaci:
- Nashova rovnováha nikdy neleží v silně dominovaném sloupci.
- Pokud má hra s konstantním součtem sedlový prvek (sedlové prvky), pak rovnováha leží v tomto prvku (těchto prvcích).
- Nashova rovnováha není (automaticky) Pareto-efektivní. Klasickým případem je hra vězňovo dilema, ve které se hráči bez možnosti kooperace racionálně rozhodnou pro řešení, které je pro oba z hráčů horší, než jiný možný výsledek hry.
- Každá hra s konstantním součtem má rovnovážné řešení ve smíšených strategiích. (Ryzí strategie jsou podmnožinou smíšených strategií).[1]
- Každá hra dvou hráčů má alespoň jedno rovnovážné řešení [1][2]
Řešené příklady
V následujících kapitolách budou představeny metody hledání Nashovy rovnováhy, počínaje nejjednoduššími, použitelnými jen ve specifických případech, po lehce složitější univerzální metody.
Příklad 1: Vězňovo dilema, eliminace dominovaných strategií
Najděte Nashovu rovnováhu ve hře vězňovo dilema, jejíž výplatní matice je dána takto: Pokud se ani jeden z vězňů nepřizná, dostane každý trest 2 roky. Pokud se přizná jeden z vězňů, stráví ve vězení jen jeden rok, ale jeho spolupachatel 10. Pokud se přiznají oba hráči, stráví každý ve vězení 10 let.
Přiznat | Nepřiznat | |
---|---|---|
Přiznat | -5, -5 | -1, -10 |
Nepřiznat | -10, -1 | -2, -2 |
- Řešení
Využijeme znalosti, že rovnovážné řešení nikdy neleží v silně (ostře) dominovaném řádku či sloupci. Pro prvního hráče první řádek (přiznat) silně dominuje druhý řádek (nepřiznat). Tento řádek tedy můžeme vyškrtnout. (První řádek je pro prvního hráče lepší při každém možném rozhodnutí protihráče.) Obdobně pro druhého hráče je druhý sloupec dominován prvním.
Přiznat | Nepřiznat | |
---|---|---|
Přiznat | -5, -5 | -1, -10 |
Nepřiznat | -10, -1 | -2, -2 |
V šedě označených buňkách tabulky tedy Nashovo rovnovážné řešení ležet nemůže. Vzhledem k tomu, že každá hra má alespoň jedno rovnovážné řešení, toto řešení je dáno volbou "Přiznat" obou hráčů a tedy výplatní hodnotou (-5, -5).
Ve hrách, které obsahují více nedominovaných řádků či sloupců tento postup k nalezení Nashovy rovnováhy nestačí. Neuvažování dominovaných prvků ale může ulehčit postup v případě dalších metod.
Příklad 2, hledání sedlového bodu
Nalezněte optimální strategie obou hráčů a Nashovu rovnováhu pro následující jednomaticovou hru:
α | β | γ | |
---|---|---|---|
a | 0 | 1 | 2 |
b | -1 | 3 | -2 |
c | -2 | -7 | 5 |
Prostor strategií prvního hráče je dán vektorem (a, b, c), prostoj strategií druhého hráče vektorem (α, β, γ). Výplatní matice určuje výplaty prvního hráče, výplaty druhého hráče jsou opačné (jde o hru s nulovým součtem).
- Řešení
Žádný ze slouců ani řádků není dominován, řešení zkusíme nalézt pomocí sedlového bodu (maximum ve sloupci, minimum v řádku). Maximum ve sloupci budu značit červenou barvou, minimum v řádku zeleným rámečkem.
- Maximum v prvním sloupci (optimální reakce prvního hráče, pokud druhý hráč zahraje strategii α) je 0, označím ji tedy červeně.
- Maximum v druhém sloupci (optimální reakce prvního hráče, pokud druhý hráč zahraje strategii β) je 3, označím ji tedy červeně.
- Maximum ve třetím sloupci (optimální reakce prvního hráče, pokud druhý hráč zahraje strategii γ) je 5, označím ji tedy červeně.
- Minimum v prvním řádku (optimální reakce druhého hráče, pokud první hráč zahraje strategii a) je 0, označím zeleným rámečkem.
- Minimum v druhém řádku (optimální reakce druhého hráče, pokud první hráč zahraje strategii b) je -2, označím zeleným rámečkem.
- Minimum v druhém řádku (optimální reakce druhého hráče, pokud první hráč zahraje strategii c) je -7, označím zeleným rámečkem.
α | β | γ | |
---|---|---|---|
a | 0 | 1 | 2 |
b | -1 | 3 | -2 |
c | -2 | -7 | 5 |
V buňce, kde se řádkové minimum a sloupcové maximum setkají, leží sedlový bod, a tedy i Nashova rovnováha.
Ve hře s konstantním součtem mohou nastat následující situace:
- Existuje jeden sedlový bod, potom Nashova rovnováha leží v tomto sedlovém bodě.
- Existuje více sedlových bodů o stejné hodnotě, potom Nashova rovnováha leží v každém z nich.
- Neexistuje sedlový bod, v tomto případě existuje pouze smíšené řešení.
Příklad 3, smíšené strategie
Nalezněte optimální strategie obou hráčů a Nashovu rovnováhu pro následující jednomaticovou hru:
α | β | γ | |
---|---|---|---|
a | 3 | 5 | -8 |
b | -2 | -1 | 5 |
c | -4 | -2 | 3 |
Prostor strategií prvního hráče je dán vektorem (a, b, c), prostoj strategií druhého hráče vektorem (α, β, γ). Výplatní matice určuje výplaty prvního hráče, výplaty druhého hráče jsou opačné (jde o hru s nulovým součtem).
- Řešení
Na první pohled je patrné že řádek c je dominován řádkem b. (racionálně uvažující první hráč tuto možnost nikdy nezvolí, protože strategie b mu ve všech případech přinese větší užitek). Pro zjednodušení výpočtu tedy budeme brát v úvahu pouze první dva řádky, v nichž jistě leží řešení.
Pokusíme se nalézt řešení pomocí sedlového bodu, postup je stejný jako u předchozího příkladu.
α | β | γ | |
---|---|---|---|
a | 3 | 5 | -8 |
b | -2 | -1 | 5 |
Matice zjevně neobsahuje sedlový bod (žádný její prvek není zároveň řádkovým minimem a sloupcovým maximem) a nedy ani žádné řešení v ryzích strategiích.
- Nalezení řešení ve smíšených strategiích
Smíšené strategie je možné nalézt pomocí metod lineárního programování, a to buď ručně, například pomocí simplexového algoritmu nebo (v prípadě max 2 sloupců nebo řádků) graficky, nebo počítačovým programem (Lingo, MPL, Excel Solver, ...). Většina metod vyžaduje na vstupu nezáporná čísla, proto matici upravíme přičtením konstanty (nejnižšího prvku, v tomto případě 8), což řešení nezmění (jde o strategicky ekvivalentní hry).
α | β | γ | |
---|---|---|---|
a | 11 | 13 | 0 |
b | 6 | 7 | 13 |
Předpis pro účelovou funkci a omezující podmínky je dán následující tabulkou:
- Nalezení Nashovy rovnováhy ve smíšených strategiích[1]
Účelová funkce (minimalizovat)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_1+p_2+...+p_m}
Podmínky
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_1_1p_1+a_2_1p_m+...+a_m_1p_m\ge0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ...}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_1_np_1+a_2_np_m+...+a_m_np_m\ge0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_i \ge 0} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle i=1,2,...m}
nebo
Účelová funkce (maximalizovat)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q_1+q_2+...+q_n}
Podmínky
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_1_1q_1+a_1_2q_n+...+a_1_nq_n\le0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ...}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_m_1q_1+a_m_2q_2+...+a_m_nq_n\le0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q_j \ge 0} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle j=1,2,...n}
Úlohy jsou duálně sdružené, takže stačí vypočítat pouze jednu z nich,proměnné z druhé úlohy jsou potom duální proměnné z první (a naopak).
Pro zjištění strategie je nutné proměnné p nebo q vydělit hodnotou účelové funkce.
Pro náš příklad je výpočetně lepší zvolit druhou možnost, protože vede ke dvěma omezujícím podmínkám (+ jedné na nezápornost), zatímco první ke třem. Účelová funkce je potom:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q_1+q_2+q_3}
(minimalizovat)
a omezující podmínky:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 11q_1+13q_2+0q_3\le0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 11q_1+13q_2+0q_3\le0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q_j \ge 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle j=1,2,...n}
Po vyřešení úlohy (řešení v doplňku Řešitel pro MS Excel 2010 je v příloze)
Příklad 4: Vězňovo dilema
- Řešení
Další příklady
Reference
- ↑ 1.0 1.1 1.2 1.3 DLOUHÝ, Martin. Úvod do teorie her. 2., přepracované vydání Praha: Oeconomica, 2009, 119 s. ISBN 978-80-245-1609-7.
- ↑ NASH, John F. Equilibrium Points in n-Person Games. In: Proceedings of the National Academy of Sciences of the United States of America, Vol.36, No. 1. Jan 15, 1950. Dostupné z: http://courses.engr.illinois.edu/ece586/TB/Nash-NAS-1950.pdf
Doplňující literatura
- Ben Polak, Game Theory (Yale University: Open Yale Courses), http://oyc.yale.edu/ (Accessed June 17, 2012). License: Creative Commons BY-NC-SA, lectures 4-8