Difference between revisions of "Assignment SS 2023/2024/cs"
(→Vplyv odlesňovania v Amazónií na globálne otepľovanie) |
(→Simulace přestupu na stanici metra Můstek) |
||
Line 113: | Line 113: | ||
[[User:Bled09|Bled09]] ([[User talk:Bled09|talk]]) 16:25, 1 May 2024 (CET) | [[User:Bled09|Bled09]] ([[User talk:Bled09|talk]]) 16:25, 1 May 2024 (CET) | ||
+ | : '''Schváleno''' [[User:Tomáš|Tomáš]] ([[User talk:Tomáš|talk]]) 20:21, 7 May 2024 (CET) | ||
== Simulace boardingu pasažéru do letadla == | == Simulace boardingu pasažéru do letadla == |
Revision as of 20:21, 7 May 2024
Na tuto stránku vkládejte svá zadání. Nezapomeňte se podepsat. Můžete použít ~~~~ (čtyři tildy) k automatickému podpisu. Používejte Ukázat náhled, abyste si prohlédli Váš výsledek před konečným odesláním. |
Prosíme, snažte se formulovat Vaše zadání pečlive. S ohledem na to, že jde o Vaši semestrální práci, očekáváme adekvátní úsilí vynaložené na zadání. Nezapomeňte, že hlavním výsledkem má být výzkumná zpráva, což znamená, že Váš simulační model musí generovat takové výsledky, které jsou konkrétní, měřitelné a ověřitelné. Pečlivě promyslete, jakým způsobem budete vyvíjet Váš model, odvoďte entity, které budete používat, nakreslete si diagram modelu, zvažte, co budete měřit. Teprve pokud máte o modelu dostatečně přesnou představu, vložte Vaše zadání. A samozřejmě, nezapomeňte si prosím přečíst Jak na simulace. |
Témata na téma hazardních her, karet, vývoje cen akcií/indexů nejsou vítány. Rovněž varianty úlohy "Predator & Prey" a příkladů ze cvičení vám budou rozmluveny. |
Abychom se vyhnuli případnému budoucímu nedorozumnění, prosíme, ověřte si, že máte tučné schváleno někde v našem komentáři pod Vaším zadání. Pokud tam není schváleno, znamená to, že Vaše zadání dosud schváleno nebylo. |
Criteria for evaluation of the simulation proposal The proposal must contain:
If any of the above points are missing from the simulation proposal, the proposal is considered incomplete. Unless the proposal contains all of the above points it will not be evaluated at all (and therefore cannot be approved).
If the answer to any of the above points is no, you need to improve your proposal. Don't wait for us to tell you so - you're wasting your time. |
Contents
- 1 Simulácia evolúcie neurónovej siete, ktorej cieľom je naučiť sa hrať klasickú hru Snake
- 2 Simulace přestupu na stanici metra Můstek
- 3 Simulace boardingu pasažéru do letadla
- 4 Simulace vývoje a dopadu změn v ceně alkoholu na spotřebu a zdraví populace
- 5 Simulace přírodního výběru
- 6 Simulácia podkladní v supermarkete
- 7 Simulace úspěšnosti studentů
- 8 Vplyv odlesňovania v Amazónií na globálne otepľovanie
Simulácia evolúcie neurónovej siete, ktorej cieľom je naučiť sa hrať klasickú hru Snake
Popis
Práca bude simulovať evolúciu agentov, ktorí sa budú snažiť naučiť hrať klasickú hru Snake. Každý agent bude predstavovaný neurálnou sieťou, ktorá na základe aktuálneho stavu hry rozhodne ako ďalej pokračovať. Cieľom práce bude zistiť najvhodnejšie parametre pre vývoj agentov.
Prostredie
Pre simuláciu evolúcie bude potrebné simulovať viacero generácií E a v každej generácii bude populácia agentov o veľkosti N. Každý agent bude hrať samostatnú inštanciu hry Snake. Po odohraní hier agentov v danej generácii sa vypočíta fitness (skóre) najlepšieho agenta. Podľa fitness sa vyberú jedinci pre ďalšiu generáciu (podľa miery elitizmu e). Ďalej sa generácia doplní novo vytvorenými agentami (potomkami), ktorí vzniknú krížením dvoch náhodne vybratých agentov. Potomkovia budú ešte zmutovaný podľa miery mutácie m. Ďalej bude pokračovať ďalšia novo vytvorená generácia.
Agenti
Každý agent bude pozostávať z neurónovej siete. Agent bude "vidieť" do ômych smerov (hore, dole, vľavo, vpravo, vpravo-hore, vpravo-dole, vľavo-dole, vľavo-hore) od hlavy hada. Pre každý smer uvidí vzdialenosť k stene, vzdialenosť k jablku (ak ho v daný smer vidí) a vzdialenosť ku svojemu chvostu (ak ho v daný smer vidí). Čiže na vstupnej vrstve bude mať 24 neurónov (8 smerov x 3 indikátory) + 4 neuróny predstavujúce smer do ktorého ide hlava hada. Celkovo 28 neurónov. Počet skrytých vrstiev a neurónov v nich môže byť cieľom skúmania práce. Váhy väzieb medzi neurónami budú z počiatku náhodné z uniformného rozdelenia, následne budú menené mutáciami agentov. Na výstupe neurónovej siete bude smer akým sa má had ďalej uberať, čiže 4 neuróny pre Hore, Dole, Vľavo, Vpravo.
Cieľ
Cieľom práce bude zistiť najvhodnejšie parametre pre vývoj agentov. S evolučným algoritmom mám skúsenosti - riešil som ním 3SAT problém a preto viem že výpočty môžu zabrať značnú dobu. Preto by som určil niektoré parametre, ktoré budú pevné a niektoré, ktoré budú cieľom skúmania. Tu mám 3 možnosti, ktoré by ma zaujímali. V každom prípade bude pevný parameter N (počet jedincov v populácii) a E počet generácií. Prvá možnosť by malá pevný počet skrytých vrstiev agentov s pevným počtom neurónov v nich a menila by sa miera mutácie a miera elitizmu. Druhá možnosť je podobná prvej, no počet skrytých vrstiev a neurónov v nich by sa s mutáciami agentov mohol meniť (čo je vlastne len zťaženie možnosti 1, ale asi sa to viac podobá skutočnej evolúcii). Tretia možnosť je, že miera mutácie a elitizmus budú pevné parametre a manuálne sa bude meniť počet vrstiev a neurónov (čo teraz ako to píšem sa mi úplne nezdá - malo by to hrozne veľa možností a ani sa to tak veľmi nepodobá evolúcii). V každom prípade budem porovnávať výsledky, ktoré agenti dosiahli za E generacií (najlepšie skóre, priemerné skóre, smerodajnú odchylku).
(Môj osobný cieľ bude, aby agent dosiahol aspoň 10 bodov a pritom, aby bolo vidno, že to nebola náhoda :D )
Nástroje
Python s knižnicou numpy pre prácu s maticami váh, knižnicou matplotlib pre grafické znázornenie výsledkov populácií a knižnicou tkinter pre zobrazenie hier (zobrazenie je to najmenej podstatné a pritom to najlepšie :D).
Autor
Stem45 (talk) 10:18, 1 May 2024 (CET)
Simulace přestupu na stanici metra Můstek
Popis
Simulovat chci přestup z linky A na linku B a naopak. Jelikož se jedná o jednu z nejvytíženějších stanic metra v Praze zaměřím se na dobu, ve které je stanice nejvíce zatížená. Zkoumat se budou oba směry příjezdu. Simulace nebude uvažovat cestující kteří chtějí z metra vystoupit.
Cíl
Výsledkem simulace by mělo být nalezení optimální cesty pro přechod z linky A na linku B a naopak. Optimální cesta bude zahrnovat i výstup z vagonu, tedy bude záležet ze kterého vagonu agent vystoupí. Optimálnost cesty se bude měřit podle:
1. Uražené vzdálenosti
2. Průměrném času
Užitečnost
Tato simulace poskytne jednoduchou a přímočarou odpověď do kterého vagonu nasednout a kterou cestou se vydat chceme-li co nejrychleji přestoupit na linku B či A a stihli tak navazující spoj.
Metoda a způsob simulace
Pro simulaci tohoto druhu budu volit agentní simulaci, kde agenti budou cestující metra. Jako nastroj pro simulaci využiji NetLogo.
Proměnné
• Příjezd metra
• Počet pasažérů
• Rychlost cestujícího
• Zvolena trasa přestupu
Náhodné proměnné
Vše až na “Příjezd metra”. Zbytek bude náhodně z intervalu získaného z dat nebo náhodným výběrem z několika možností.
Použita data pro nastavení simulace
Oficiální data od DPP o metru z roku 2015: https://data.pid.cz/pruzkumy/2015_METRO_sbornik.pdf
Bled09 (talk) 16:25, 1 May 2024 (CET)
Simulace boardingu pasažéru do letadla
Popis
Tato práce bude podrobně zkoumat proces nástupu cestujících do letadla a srovnávat účinnost různých metod, které se při tomto procesu používají. Bude se zabývat simulací samotného boardingu, abychom lépe porozuměli, jak různé strategie ovlivňují průběh nástupu a celkový čas potřebný k dokončení této fáze cesty.
Cíl
Cílem simulace je identifikovat nejefektivnější způsob nástupu cestujících s ohledem na minimalizaci celkové doby nástupu a maximalizaci spokojenosti cestujících. Simulace bude modelovat různé metody boardingu, jako je zónový boarding, skupinový boarding a nástup podle sedadel, a analyzovat jejich vliv na celkový čas nástupu a další relevantní faktory.
Užitečnost
Výsledky simulace poskytnou užitečné poznatky pro optimalizaci procesu boardingu letadla a zlepšení cestovního zážitku cestujících.
Metoda a způsob simulace
Pro simulaci tohoto druhu budu volit agentní simulaci, kde agenti budou cestující metra. Jako nastroj pro simulaci využiji NetLogo.
Proměnné
• Metoda boardingu
• Rozložení letadla a jeho velikost
• Časový rozvrh
• Strategie priority boardingu
Náhodné proměnné
• Chování cestujících - rychlost
• Náhodné rozložení cestujících v jednotlivých zónách
• Náhodné změny v chování cestujících
• Náhodné události
Použita data pro nastavení simulace
Vzniklá studie od Jason H. Steffen: https://www.sciencedirect.com/science/article/abs/pii/S0969699708000239
Arťom Ňorba (talk) 09:16, 2 May 2024 (CET)
Simulace vývoje a dopadu změn v ceně alkoholu na spotřebu a zdraví populace
Popis
Konzumace alkoholu je dlouhodobě v České republice na vysoké úrovni. Roční spotřeba alkoholu na osobu dlouhodobě dosahuje hodnoty kolem 10 litrů čistého alkoholu. Denně si alkohol dopřeje téměř 10 % dospělé populace. Právě na spotřebu alkoholu a zdravotní chování populace má největší vliv jeho cena. Změny v cenách alkoholu pak mohou ovlivňovat míru spotřeby a zdravotní stav populace. Je důležité porozumět tomu, jak tyto změny ovlivňují chování a zdraví populace, aby bylo možné navrhovat efektivní politiky a intervence v oblasti konzumace alkoholu.
Cíl
Cílem simulace je analýza dopadu změn v ceně alkoholu na jeho spotřebu a zdraví populace (počet zavislých osob). Konkrétně by měla simulace odpovědět na tyto otázky.
Jaký je vztah mezi změnami v ceně alkoholu a mírou spotřeby alkoholu v populaci? Jaká částka zvýšení ceny alkoholu měla významný vliv na snížení spotřeby alkoholu v české populaci a jaká částka měla minimální nebo žádný vliv na spotřebu alkoholu? Jak tyto změny cen alkoholu ovlivňují počet alkoholově zavislých osob?
Užitečnost
Simulace může poskytnou důležité informace pro tvorbu a implementaci politik, které se týkají regulace alkoholu a cenových opatření.
Metoda a způsob simulace
Metoda a způsob simulace budou realizovány prostřednictvím nástroje Vensim, který je vhodný ke sledování změn hodnot proměnných v čase.
Proměnné
• Cena alkoholu • Spotřeba alkoholu • Počet alkoholově závislých osob
Náhodné proměnné
• Průměrný příjem obyvatelstva • Míra nezaměstnanosti • Inflace
Použitá data pro nastavení simulace
https://www.drogy-info.cz/zprava-o-zavislostech/souhrnna-zprava-o-zavislostech-v-cr-2022/ https://www.czso.cz/csu/czso/graf-spotreba-alkoholickych-napoju-na-1-obyvatele-v-ceske-republice
Lacb03 (talk) 15:41, 3 May 2024 (CET)
- Jako výchozí bod dobrý, jen to chce rozpracovat, ať ta simulace pokrývá nějaký celý systém (když už se jedná o systémovou dynamiku) a né jen jeden jev - např: v tomto případě třeba práce s alkoholismem jako takovým, kde centrálním objektem (materiálovým tokem) by byl alkoholik. Člověk se jím nějak stává, přestává být, je v léčbě, upije se k smrti atp. A na to lze působit nějakými nástroji. Šlo by to zadání v tomto stylu rozvést? Oleg.Svatos (talk) 18:10, 4 May 2024 (CET)
Simulace přírodního výběru
Popis
Simulace se zabývá vývojem jedinců v předem definovaném prostředí s možnými vlastnostmi vývoje. Simulace abstrahuje zjednodušený svět a snaží se poukázat na fungování přírodní selekce dle Charlese Darwina.
Agenti
Agenti jsou jedinci, kteří se snaží přežít v prostředí tím, že získají jídlo. Mají různé vlastnosti, které se v čase mění. Jedinec se každý den reprodukuje, umírá nebo zůstává neměnný. Každý reprodukovaný jedinec má změněné vlastnosti v různých závislostech. Výsledkem zkoumáme, kteří jedinci (série vlastností) se v daném prostředí vede nejlépe.
Cíl
Cílem simulace je ukázat a vizualizovat, jak se budou jedinci vyvíjet v rámci přežití v prostředí, kde se vyskytují i ostatní jedinci. Výsledkem jsou takový jedinci, který mají nejvyšší šanci přežít v daném prostředí.
Užití
Simulaci lze použít jako důkaz přírodní selekce a její vizuální interpretaci v zjednodušeném světe. Lze jej využít jako doprovodný materiál při výuce.
Metoda a způsob simulace
Jako nástroj pro tvorbu modelu využiji NetLogo, protože tvořím multiagentní systém.
Proměnné
• Počet aktérů • Počet generovaného jídla • O kolik procent musí být jedinec větší, aby mohl sníst menšího
Náhodné proměnné
• Původní umístění jedinců • Umístění jídla • Změna vlastností • Hledací cesta
Data pro nastavení simulace
Jelikož se jedná o přírodní výběr, lze se k proměnným chovat jako k jiným fenotypovým vlastnostem, tedy pro každou vlastnost může být odlišná. Avšak k odvození hodnot použiji tento článek: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497250/
Rubo01 (talk) 12:06, 6 May 2024 (CET)
Simulácia podkladní v supermarkete
Popis
Simulácia sa zameriava na skúmanie vplyvu počtu pokladní na zisk supermarketu. Cieľom je zistiť, ako množstvo pokladní má najväčší pozitívny vplyv na zisk, pričom sa berú do úvahy aj dlhé fronty, ktoré môžu odradiť zákazníkov a viesť k ich odchodu.
Agenti
Agenti sú jednnotlivý zákazníci.
Cíl
Cieľom simulácie je nájsť optimálny počet pokladní a ich rýchlosť obsluhy, ktoré zabezpečia maximálny zisk pre supermarket. Optimálny počet pokladní a rýchlosť obsluhy budú merať podľa:
• Celkový zisk supermarketu • Dĺžka fronty na pokladniach • Čas, ktorý trvá zákazníkom od začiatku fronty k momentu zaplatenia
Užitočnosť
Táto simulácia poskytne užitočné informácie o tom, ako zlepšiť prevádzku pokladní a maximalizovať zisk. Pomôže efektívnejšie riadiť personál a prispôsobiť sa meniacim sa potrebám zákazníkov.
Metóda a spôsob simulácie
Ako nástroj na tvorbu modelu použijem NetLogo
Premenné
• Počet pokladní • Rýchlosť obsluhy pokladní • Počet zákazníkov
Náhodné premenné
Všetky premenné budú náhodné premenné.
Dáta
Historické údaje o príchode zákazníkov do supermarketu, vrátane "peak hours" a priemerných tokov zákazníkov. Priemerné časy obsluhy pri pokladniach založené na pozorovateľných údajoch.
Lavd01 (talk) 16:10, 6 May 2024 (CET)
Simulace úspěšnosti studentů
Popis
Simulace se zaměřuje na zkoumání vlivu různých faktorů, jako je typ školy, pohlaví studenta, věk, typ adresy, velikost rodiny, stav spoluobývání rodičů, úroveň vzdělání matky, úroveň vzdělání otce, povolání matky a povolání otce, na akademický výkon a úspěch studentů ve školním vzdělávání.
Agenti
Agenti jsou studenty
Cíl
Cílem simulace je analyzovat vliv sociodemografických faktorů na úspěšnost studentů a vzdělávací výsledky. Cílem je identifikovat klíčové determinanty akademického výkonu studentů a zkoumat strategie pro zlepšení rovnosti ve vzdělávání a přístupu k němu.
Užitečnost
Tato simulace poskytne užitečné poznatky pro pedagogy, politické rozhodovatele, školní administrátory a výzkumníky. Pedagogové ji mohou využít k porozumění, jak různé sociodemografické charakteristiky studentů ovlivňují akademické výsledky a přizpůsobit intervence podle potřeby. Politici ji mohou využít k navrhování politik založených na důkazech, které mají za cíl snížit nerovnosti ve vzdělávacích výsledcích. Školní administrátoři ji mohou využít k efektivnímu alokování zdrojů a implementaci cílených podpůrných programů. Výzkumníci ji mohou využít k zkoumání komplexních interakcí mezi různými sociodemografickými faktory a úspěchem studentů.
Metoda a způsob simulace
Jako prostředek pro tvorbu modelu použiju NetLogo.
Proměnné
• Pohlaví studenta (F nebo M) • Věk • Typ adresy (městská nebo venkovská) • Velikost rodiny (menší nebo rovno 3 nebo větší než 3) • Stav spoluobývání rodičů (žijí spolu nebo odděleně) • Úroveň vzdělání matky (0-4) • Úroveň vzdělání otce (0-4)
Náhodné proměnné
• Motivace ke studiu
Dáta
Hodnoty proměnných budou založeny na datasetu (Student achievement in secondary education of two Portuguese schools. - https://www.kaggle.com/datasets/larsen0966/student-performance-data-set/data), přičemž distribuce a charakteristiky každé proměnné budou odpovídat empirickým datům.
Vplyv odlesňovania v Amazónií na globálne otepľovanie
Popis
Táto simulácia sa zameriava na analýzu odlesňovania v Amazónií a jeho vplyv na globálne otepľovanie. Hlavným cieľom je študovať, ako zmeny v rozlohe lesných porastov ovplyvňujú teplotu, vlhkosť a iné environmentálne faktory.
Agenti
1. Lesníci: Agenti zodpovední za rozhodovanie o odlesňovaní.
2. Stromy: Agenti reprezentujúci lesný porast v oblasti simulácie.
3. Senzor: Agenti sledujúci teplotu, vlhkosť a iné v rôznych častiach oblasti.
Cíl
Cieľom simulácie je analyzovať, ako rôzne úrovne odlesňovania ovplyvňujú teplotu a ďalšie environmentálne faktory v danej oblasti.
Užitečnost
Simulácia poskytuje užitočný nástroj na preskúmanie dopadov odlesňovania na miestne klimatické podmienky a globálne otepľovanie. Vďaka vizualizácie sa vytvára priestor pre lepšie pochopenie procesov, ktoré sa dejú v dôsledku odlesňovania Amazónie. Na základe simulácie je viditeľné aký vplyv má odlesňovanie na teplotu a vlhkosť v oblasti a na celosvetové klimatické zmeny a pomáha tak identifikovať optimálne stratégie riadenia lesníctva z hľadiska ochrany klímy.
Metoda a způsob simulace
Simulácia bude používať agent-based modelovanie NetLogo, kde jednotlivé entity (agenti) budú reagovať na zmeny vo svojom prostredí a vykonávať určité akcie na základe stanovených pravidiel.
1. Inicializácia: Na začiatku simulácie sa definuje topografia, rozmiestnenie stromov a miesto lesníkov.
2. Krok simulácie: V každom kroku lesníci rozhodujú o tom, koľko stromov odstránia a kde. Potom sa aktualizuje stav stromov a environmentálne faktory.
3. Vyhodnotenie: Po určenom počte krokov sa vyhodnotia zmeny v teplote, vlhkosti a iných faktoroch.
Proměnné
• Počet senzorov = 5
• Lesná plocha: Miera lesného porastu v oblasti simulácie, môže byť vyjadrená ako počet stromov alebo pomer lesného pokrytia vzhľadom na celkovú plochu.
• Teplota
• Vlhkosť
Náhodné proměnné
• Úroveň odlesňovania: Percento stromov odstránených lesníkmi, čo ovplyvňuje veľkosť a rozlohu lesného pokrytia.
• Počet lesníkov
Dáta
• Global Forest Watch (https://www.globalforestwatch.org/): Poskytuje dáta o odlesňovaní a lesných pokryvkách z celého sveta, vrátane histórie odlesňovania a zmeny lesných ploch.
• NASA Earth Observing System Data and Information System (EOSDIS) (https://earthdata.nasa.gov/): NASA ponúka širokú škálu dát o poveternostných podmienkach, teplotách, vlhkosti a ďalších environmentálnych faktoroch pomocou svojich satelitných misií.
• WorldClim (https://www.worldclim.org/): Poskytuje voľne dostupné globálne klimatické dáta, vrátane teploty, zrážok a iných klimatických premenných, ktoré môžu byť použité na simuláciu klimatických podmienok v rôznych oblastiach.
• Food and Agriculture Organization of the United Nations (FAO) (http://www.fao.org/faostat/en/#data): FAO poskytuje štatistické dáta o lesníctve a odlesňovaní, vrátane údajov o množstve odlesnených ploch v rôznych krajinách a regiónoch.